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Simple Summary: Vector-borne diseases (VBDs) are a major threat to human health. Climate
change has a significant impact on VBDs. To clarify the complex effects of climate change on VBDs,
we concluded the effects of climate on the transmission and spread of VBDs from an ecological
perspective and summarized VBD changes in response to climate change, specifically including:
the nonlinear effects of local climate (temperature, precipitation and wind) on VBD transmission,
especially temperature showing n-shape effects; regional climate (the El Niño–Southern Oscillation
and North Atlantic Oscillation) has time-lag effects on VBD transmission through indirect impact
on local climate; and the u-shaped effect of extreme climates can lead to the geographical spread of
VBDs. In terms of non-climatic factors, land use and human mobility through the interactions with
climatic factors, will affect transmission and spread of VBD. We further explored the uncertainty of
the impact of climate change on VBDs under the COVID-19 pandemic. A systematic understanding
of the impact of climate change on the transmission and spread of VBD can provide insights and
suggestions for future research on VBD prevention and control.

Abstract: Climate change affects ecosystems and human health in multiple dimensions. With the
acceleration of climate change, climate-sensitive vector-borne diseases (VBDs) pose an increasing
threat to public health. This paper summaries 10 publications on the impacts of climate change
on ecosystems and human health; then it synthesizes the other existing literature to more broadly
explain how climate change drives the transmission and spread of VBDs through an ecological
perspective. We highlight the multi-dimensional nature of climate change, its interaction with other
factors, and the impact of the COVID-19 pandemic on transmission and spread of VBDs, specifically
including: (1) the generally nonlinear relationship of local climate (temperature, precipitation and
wind) and VBD transmission, with temperature especially exhibiting an n-shape relation; (2) the
time-lagged effect of regional climate phenomena (the El Niño–Southern Oscillation and North
Atlantic Oscillation) on VBD transmission; (3) the u-shaped effect of extreme climate (heat waves,
cold waves, floods, and droughts) on VBD spread; (4) how interactions between non-climatic (land
use and human mobility) and climatic factors increase VBD transmission and spread; and (5) that the
impact of the COVID-19 pandemic on climate change is debatable, and its impact on VBDs remains
uncertain. By exploring the influence of climate change and non-climatic factors on VBD transmission
and spread, this paper provides scientific understanding and guidance for their effective prevention
and control.

Keywords: climate change; vector-borne diseases; transmission; spread; interaction; COVID-19
pandemic
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1. Introduction

Climate change, which has affected the world since the last century, has caused a
general rise in temperatures over the period of 1906–2005 [1]. According to the Sixth
Assessment Report (AR 6) of the Intergovernmental Panel on Climate Change (IPCC), the
global average surface temperature will reach or exceed 1.5 ◦C in the next two decades,
accompanied by increasing precipitation, melting glaciers and rising sea levels [2]. With the
acceleration of climate change, extreme weather conditions will be frequent [3] and pose
serious threats to human life and health. At present, about 30% of the global population
is exposed to extreme weather that exceeds human thermoregulatory capacity for at least
20 days a year [4]. Moreover, global warming and extreme precipitation can contribute
to the prevalence and expansion of diseases, leading to at least 150,000 deaths per year
worldwide [5].

The ten publications in this Special Issue illuminate the impacts of climate change on
ecosystems and human health from different perspectives in diverse disciplines, including
phytology, biology, epidemiology, pathology, and molecular biology. In phytology and
biology, the geographical ranges of plants and animals have been shown to be affected by
climate change [6–8]. In epidemiology and pathology, the future geographic expansion
of vector species that carry vector-borne diseases (VBDs) has been evaluated [9–12], and
proved the invasive and evolutionary adaptation of vectors to different ecological and
environmental conditions [13]. The impact of non-climatic factors on VBDs has also been
assessed [14]. On the basis of these ten articles, we present a further discussion on climate
change and VBDs.

As a climate-sensitive type of disease, VBDs are assessed on a global scale with the
aim of shedding light on possible future trends, particularly given the increased likelihood
of climate change [15]. The impact of climate change on VBDs has become an indisputable
fact, and is creating new challenges for public health. As a category, VBDs include rodent-
borne (plague, hemorrhagic fever, hemorrhagic fever with renal syndrome, leptospirosis,
cutaneous leishmaniasis, and Puumala hantavirus), mosquito-borne (malaria, dengue, Zika,
chikungunya, West Nile virus, Ross River virus, and Japanese encephalitis), tick-borne
(tick-borne encephalitis, Lyme disease, etc.), and other arthropod-borne diseases [16,17].
Over 700,000 people die from VBDs each year, and more than 80% of the global population
lives in high-risk areas threatened by one or more types of VBDs [18]. Of the 250 countries
around the world, 86% (218 countries) are suitable for arboviral disease survival and
reproduction [19]. Accordingly, a large number of scientists have devoted considerable
effort to studying the impact of climate change on VBDs, with 2133 related studies having
been published as of August 2022 (Figure 1).
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The influence of climate factors on the transmission and spread of VBDs can be
considered at the levels of local climate, regional climate, and extreme climate. Local
climate, represented by temperature, rainfall, and wind, mainly affects the transmission of
VBDs by affecting their vectors [20]; regional climate, represented by the El Niño–Southern
Oscillation (ENSO) [21], North Atlantic Oscillation (NAO) [22], Pacific Decadal Oscillation
(PDO) [23], and Indian Ocean Dipole (IOD) [24], mainly has indirect impacts on VBDs
through affecting local climate [25]. Meanwhile, extreme climate events such as heat waves,
cold waves, floods, and droughts increase the risk of VBD spillover [26]. We additionally
discuss the interaction between non-climatic factors (e.g., land use and human mobility)
and climate factors as relates to VBD transmission and spread [27–29]. Moreover, we
also discuss the impact of coronavirus disease 2019 (COVID-19) on climate change and
the effects of the COVID-19 pandemic on the outbreak risk and incidence of VBDs [30].
All told, our paper aims to comprehensively assess the impacts of climate change on the
transmission and spread of VBDs so as to support the precise prevention and control of
and comprehensive intervention in VBDs.

2. Non-Linear Effects of Local Climate on VBD Transmission

The effects of local climate factors (mainly considering temperature, precipitation,
wind) on VBD transmission are generally nonlinear. These factors can affect the distribution
range, population dynamics, and virus transmission ability of vectors [29], and hence the
developmental response of pathogens [31].

The non-linear effect of temperature on VBD transmission generally follows an n-
shape (Figure 2). Under suitable temperature conditions, the climate adaptability of VBD
transmission will be relatively high. When the temperature does not reach suitable condi-
tions, the risk of VBD transmission increases with the increase of temperature, and when
the temperature exceeds the peak of the suitable temperature, the risk of VBD transmission
decreases with the increase of temperature. Under unsuitable temperature conditions, vec-
tor survival may be reduced [32], thereby reducing the transmission capacity of VBDs [33],
which also directly affects the development of vector-dependent pathogens [34]. For ex-
ample, the survival and reproduction range of rodents is generally 10.0–30.0 ◦C, while
20.0–30.0 ◦C is the suitable temperature range for rodent-borne disease transmission [35].
The predicted epidemic growth of plague outbreaks is positive between 11.7 ◦C and 21.5 ◦C,
with a maximum around 17.3 ◦C [36]. With regard to mosquito-borne diseases, temperature
can affect the development and survival of mosquitoes, and there is a thermal optimum
which will be suppressed at either heat or cold [37]; including malaria, dengue and Zika,
temperature and climate change are reported to have strong nonlinear effects on ectother-
mic vectors and parasites. The temperature range for the transmission of mosquito-borne
diseases is generally 9.0–38.0 ◦C, with the most suitable range being 23.0–29.0 ◦C [38].
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Precipitation has also demonstrated a nonlinear effect on VBD transmission in many
studies. A suitable level of precipitation may be beneficial for the formation of vector breed-
ing habitats [39], especially in deserts, which can provide rich food sources for rodents [40].
Precipitation is also generally beneficial to mosquito oviposition and reproduction, while
the relationship between rainfall and incidence of malaria first increases and then decreases
with increasing precipitation, reaching its peak at 120 mm [41]. With regard to ticks, a span
of more than 28 precipitation days leads the number of ticks to increase significantly [42];
however, large amounts and long periods of precipitation can wash away ticks, their eggs,
and their larvae, thus reducing the population [43].

High wind speeds hamper mosquitos in their flight, can decrease the density of
mosquitoes, and make them less likely to stand on and bite their hosts. An example
to support this view is the finding that high wind impeded the rate of West Nile virus
transmission; conversely, there is no obvious negative trend in the effect of low wind speed
on mosquitoes. [44,45]. This also represents a non-linear effect on VBD transmission.

Climate change has an important impact on the transmission of vector-borne diseases,
which in general will expand the climate-adaptive transmission zone of vector-borne
diseases. In Europe, climate change is likely to expand ticks into higher latitudes and
altitudes, thereby increasing the incidence of tick-borne diseases [46]. In South Africa,
however, rising temperatures could decreases habitat suitability for some tick species
(Acari: Ixodidae), which will decrease the occurrence of the related diseases [47]. Under
climate scenarios from the IPCC, the climatic suitability of chikungunya transmission
will increase in western and central parts of Europe, but will not generally be suitable in
Southern Europe [48]. Due to climate change, the suitability of rodents in certain high-
altitude areas has increased by 40% [49]. For mosquitoes and ticks, warming climate
generally increases the risk of associated disease transmission at high-latitude and -altitude
areas, while the risk of transmission may generally decrease in tropical regions. For rodent-
borne diseases such as plague, rodents and fleas both influence pathogen transmission;
there is uncertainty about the effect of high temperatures on the inhibition of fleas (vectors)
and flea-mediated transmission of pathogenic bacteria [50].

3. Time-Lag Effect of Local and Regional Climate Impacts on VBD Transmission

Regional climate mainly exerts its influence on VBDs through local climate factors,
which in turn affect the ecological habitat, distribution, and population dynamics of the
vectors [51], and hence the transmission rate of the pathogens [24,52], thereby impacting
outbreaks of VBDs [53–55]. The complexity of these indirect effects can create additional
time-lag effects (Figure 3).

Numerous studies have concluded that local climate has a time-lag effect on VBD
transmission in the short term. For rodent-borne diseases, many studies have also demon-
strated a time-lag effect of regional climate, such as on renal hemorrhagic fever [56,57],
leptospirosis [58], and cutaneous leishmaniasis [59]. The time-lag is 1–6 months or even one
year due to the complex biological characteristics of rodent-borne diseases [35]; for example,
temperature affects the human plague in Arizona and New Mexico with a 2–3 month lag
effect, while precipitation has a 1–2 year lag effect [60]. For mosquito-borne diseases, a large
number of studies have investigated time-lag effects, including on dengue fever [61,62],
malaria [63–65], chikungunya [66], Ross River virus [67–69], and Japanese encephalitis [70].
The time-lag for these diseases is usually considered to be about 0–2 months due to indirect
effects on the life history and density of mosquitoes [71].

Time-lag effects of regional climate have wider ranges and longer timespans than local
climate effects, and hence are more relevant to making predictions for disease prevention
in advance. ENSO is the most significant example of quasi-periodic climate variability on
an interannual scale that can affect weather all over the world [21]. The pattern of global
climate variability associated with ENSO has been shown to impact a number of infectious
diseases, including rodent-borne diseases [24], mosquito-borne diseases [72,73], and tick-
borne diseases [59]. For example, increases in the rate of human plague in China were
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well-associated with ENSO over short periods (2–3 years), medium periods (6–7 years),
and long periods (11–12 years, 30–40 years) [74]. ENSO-driven dengue cases in India
between 2010–2017 were likewise positively associated with a 3–6 month time-lag [62],
which would help us to predict human outbreaks in advance. However, the ENSO index
does not seem to be an accurate index of climate variability in Europe; instead, the NAO
has been found to impact outbreaks of 13 infectious diseases [22]. Moreover, multi-decadal
temperature changes have been shown to influence the NAO–plague correlation, with
15–22 years lagged impact in different European regions [75]. All told, these regional
climates clearly affect the occurrence of VBDs and human health by influencing precipita-
tion and temperature [76–78], and could be used as early signals for disease control and
prevention.
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4. Impact of Extreme Climate Distribution Expansion on VBD Spread

With the frequency of climate extremes increasing as climate change accelerates, it is
increasingly important to understand the impact of climate range edges and limitations on
VBDs (Figure 4A). Most extreme climate conditions have a u-shaped effect on the spread
of VBDs. Under adaptive climatic conditions, the lowest risk of VBD spread is usually
observed, whereas under extreme climates which lower or increase the conditions of adap-
tive climate, the risk of VBD spread will increase. This means that extreme climate events
may increase the risk of disease transmission and the spillover of VBDs, whereas under
adaptive climatic conditions, the expansion of VBDs is lower (Figure 4B). Extreme climate
has been found to be one of the main causes of disease outbreaks and is a cause of alarm in
the global community. The impact of climate change on VBDs is more significant in the
fringes of different climatic areas, which strongly influences the geographical distribution
of vectors [20].
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Figure 4. Extreme climate is located at the edge of the ecological niche, and unlike adaptive climate,
can affect the spread of VBDs. (A) Extreme climate, namely events beyond the range of adaptive
climate conditions (heat waves, cold waves, floods, and droughts), has attracted increasing attention
as such events can lead to spread of VBDs. (B) The u-shaped effect of extreme climate on VBD spread.
Climate extremes have a greater risk of spillover than the adaptive climate conditions.

Different types of extreme climate events (heat waves, cold waves, floods, and
droughts) have different effects on the distribution expansion of VBDs. The impact of
heat waves on mosquitoes depends on the onset time and duration; such events usually
promote mosquito population growth in early developmental stages, but often suppress
the entire life cycle [79]. Thus, under short-term heat waves, it is advised to guard against
the spreading of mosquito-borne VBDs caused by rapid growth of mosquitoes. On the
other hand, an experimental study in Kenya found that cold waves during summer months
were more favorable for mosquito growth on account of the extremely warm year-round
temperature; hence, cold waves in Kenya keep summer cooler and are conducive to VBD
spread [80]. Meanwhile, floods wash away the aquatic stage of mosquitoes and their
eggs from their breeding sites [81], while the stagnant water left after flood recession
provides a suitable habitat for mosquitoes [82–84]. When wetlands experience occasional
droughts, mosquito populations suddenly explode as their predators and competitors
are eliminated [85]. Such increases in mosquito populations would also lead to high-risk
spillover of mosquito-borne infectious diseases. Climactic trends also impact VBDs; for
example, in northern China (arid climate), rodents are expected to respond positively to
high precipitation, whereas in southern China (humid climate), excessive precipitation
would destroy rodent nests [86], which impacts human plague intensity due to its positive
correlation with rodent density [87].

Thus, in the context of climate change, climate extremes are increasingly expected
to create additional risks and possibilities for the spread of VBDs [88,89]. When there is
extreme heat in winter, the lack of snow cover makes contact between bank voles and
humans easier, such as that which occurred to produce the Puumala hantavirus (PUUV)
epidemic of 2006–2007 [90]. An Ecuador study found that under extreme climate, Aedes
aegypti can expand its distribution in mountainous areas by up to 4215 km2, which would
put over 12,000 people at risk of disease [37]. In India, an increase of heat wave events has
made chikungunya and dengue diseases more prevalent in coastal districts, and Japanese
encephalitis and malaria more prevalent in interior districts [91]. Extreme heat, drought,
and flooding all have a negative impact on tick distribution, which may disrupt the habitat
of Ixodes ticks in Europe, especially Northern and Central Europe; however, extreme
weather is expected to expand the distribution of Ixodes ticks in Europe by 3.8% during
2040–2060, and tick-borne encephalitis (TBE) is expected spread to high altitudes and
latitudes [92]. In New York State in America, the annual number of Lyme disease cases
increase 4–10% under mild winter temperatures, and increase 2% under extended spring
and summer days [93].
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5. Interaction between Non-Climate and Climate Factors Alters VBD Spread

Beyond climate factors alone, the interactions of non-climatic factors (land use and
human mobility) and climate factors are important to consider for their impacts on VBD
spread [27,28,94].

The interaction of land use and climate change will provide opportunities for pathogen
exchange among geographically isolated wildlife, and thus in some cases will promote
disease spillover [95]. Projections under climate change and land use in 2070 have indicated
that in Asia and Africa, species will converge into new communities at high altitudes,
biodiversity hotspots, and areas of high population density, resulting in approximately
4000 times greater cross-species transmission of their associated viruses [95].

Human mobility is also a major factor in the global spread of VBDs [96,97]. With
climate change making some areas uninhabitable (as with the severe drought in sub-
Saharan Africa), the interaction of climate change and human mobility will manifest as
viruses traveling along with mass migrants [27].

6. The COVID-19 Pandemic Introduces a New Situation for VBD Epidemics

The impact of the COVID-19 pandemic on climate change is debatable in the short
term [98–101]; however, COVID-19 as a background may result in new circumstances
that impact the occurrence of VBD epidemics. On the one hand, human activities and air
pollution have been reduced during lockdowns in the COVID-19 pandemic, and climate
change has been mitigated [98]. On the other hand, a similar reduction in global SO2
emissions was found to weaken the aerosol cooling effect, which can lead to warming [102].
These possible climate changes may have new effects on the transmission and spread of
climate-sensitive VBDs.

Besides climate change, lack of vector testing and control activities [103–106] and in-
sufficient financial support for VBD surveillance [107,108] during the COVID-19 pandemic
have led to increased prevalence of VBDs. Routine vector testing and control activities
required by the Department of Prevention and Control, such as regular household sur-
veys, have been suspended during COVID-19 quarantine [103–106]. Many countries have
temporarily suspended adult surveillance and larval control measures for Aedes aegypti,
resulting in an increased risk of dengue transmission [109]. At the same time, due to the
economic pressure caused by COVID-19, financial support for VBD surveillance is insuffi-
cient [107,108]. In addition, some VBDs with similar symptoms have been marginalized
and underdiagnosed during the COVID-19 pandemic, resulting in VBDs being ignored
rather than eliminated [30,110].

However, lockdown policies have greatly reduced imported cases and blocked sources
of VBD transmission [110–112]. Statistics indicate that the number of vector-borne cases
declined dramatically during the COVID-19 pandemic in many countries [111–114]. There
are two important reasons for the decrease in the number of VBDs. One reason is that
entry–exit control in different countries have greatly reduced imported cases and blocked
the source of disease transmission [110]. The other is that the decreasing of human outdoor
activities and physical distancing interventions reduced the bite chance of mosquitoes, and
consequently reduced the risk of mosquito-borne disease transmission [111,112]. Therefore,
prevention and control targeting COVID-19 transmission also has a preventive effect
on VBDs.

7. Conclusions

In this paper, we summarized the different impacts of multiple climatic factors on the
transmission and spread of VBDs in the context of climate change. Local climate exerts
non-linear direct effects, resulting in rapid transmission in suitable conditions and decline
in an unsuitable environment, with local temperature in particular showing a clear n-shape.
Regional climate has an indirect impact on VBDs, affecting transmission through its effects
on local climate, which by necessity produces a certain time-lag for the effect on disease
transmission. Extreme climate events can increase the spread of disease, leading to the
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expansion of VBD distributions. Moreover, land use and human mobility have an important
interaction effect on VBD spread, increasing the possibilities for spread and spillover. The
impact of the COVID-19 pandemic on how climate change affects VBD transmission and
spread is yet uncertain.

Quarantine policies during the COVID-19 pandemic successfully blocked the import
of VBD cases; this effective prevention and control policy is worth adopting and applying in
the field of VBDs. Meanwhile, the impact of COVID-19 on climate change is controversial,
and its potential effect on VBDs may gradually become clear in the future. Accordingly, it
remains necessary to further explore the potential of COVID-associated climate change to
drive effects on VBDs. Meanwhile, the improvement of surveillance systems in relation to
the COVID-19 pandemic and the construction of a surveillance network are also worthy
of application in VBD surveillance. With the continuous improvement of monitoring
systems, it also becomes necessary to adopt methods from the fields of machine learning
and artificial intelligence to handle large databases with complex algorithms in the future.

There is still a lot of research worth undertaking with regard to climate change and
VBDs. One important research direction is to integrate multidisciplinary factors to analyze
the impact of climate change on VBDs, especially with reference to the fields of computer
science, zoology, entomology, ecology, and epidemiology. Through the integration of
multiple disciplines, we can not only better understand the impacts of climate change
on VBDs, but also develop a deeper understanding of the occurrence and development
mechanisms of these infectious diseases. Such findings could contribute to achieving a
better understanding of how climate change drives effects on VBD risk and spread, thereby
improving the prevention and control of VBDs and so improving human health.
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